
[三訂版オリジ・スタンⅢ受基本問題H]

極方程式″=./2~一
sin θ
が表す図形を直交座標レ,"に図示せよ。
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[三訂版オリジ・スタンⅢ受基本問題12]

2直線たos(θ ―

=)=3, 

ハin θ=3の交点Aと点 B(2, :→ を通る磋琳泉のねウケ程式を求めよ。
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[三訂版オリジ・スタンⅢ受問題A39]

極方程式′=蒸
満 面

は 地 線を,餃 酔 は,勁 に関す紡 樹 燎 し その形 細 示せよ。

原点を0とする。① の曲線上猟 Pc勁 から直線″=´ に下ろした垂線をⅢ とし ″=器 とおく。点 P
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[三訂版オリジ・スタンⅢ受問題A401

″ノ平面において,2点 Fl(a,α ),F2(~ク ' ~α)からの距離の積が一定値 2●
2と なるような点 Pの軌跡をCと する。

ただし,α >0である。

直交座標(″,勁 に関してのCの方程式を求めよ。

原点を極とし″軸の正の部分を始線とする極座標(4θ )に関してのCの極方程式を求めよ。
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[三訂版オリジ・スタンⅢ受問題A41]

原点を0とする座標平面において,次の極方程式で表される2つの曲線を考える。

″=/1θ )=3cosθ ,  ′=g(θ )=1+COSθ

ただし,0≦θ<2π とする。また,極座標が(/(θ ),θ),(σ (θ ),θ)である点をそれぞれRQと する。

点P(/(θ ),θ)と点Q(σ (θ ),θ)の間の距離の最大値と最小値を求めよ。
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[三訂版オリジ・スタンⅢ受例題闘

放物線ノ
2=4″  … (Э上に4点があり,ッ座標の大きい順にAB,CDと する。

とBDは④ の焦点 Fで垂直に交わり,頭 が″軸の正の方向となす角をθとする。

AFを θで表せ。
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[三訂版オリジ・スタンШ受 問題B42]

実数う,ご,α をとり,ι >0,グ≧0と する。曲線 Cを極方程式 上 =ら cOs(θ ―α)+′ によって定める。
″
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[三訂版オリジ・スタンⅢ受問題B43]

直交酔 において,点 A"ぼ,の と準線″=ナ からの距離の比が√ :2である点 Pけ,"の軌跡獄 めよ。

(1)におけるAを極,″軸の正の部分の半直線AXと のなす角θを偏角とする極座標を定める。このとき,Pの軌

跡を″=/(θ)の形の極方程式で求めよ。ただし,0≦θく2π ,′>0とする。
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